
COT 6405 Introduction to Theory of 
Algorithms

Topic 10. Linear Time Sorting
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How fast can we sort?

• The sorting algorithms we learned so far

– Insertion Sort, Merge Sort, Heap Sort, and 
Quicksort

• How fast are they?

– Insertion sort  O(𝑛2)

– Merge Sort O(nlgn)

– Heap Sort O(nlgn)

– Quicksort O(nlgn)
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Common property

• Use only comparisons between elements to 
gain order information about an input 
sequence

• Comparison sort

– Given two elements 𝑎𝑖 and 𝑎𝑗, we perform one of 

the following tests to determine their relative 
order

– 𝑎𝑖< 𝑎𝑗, 𝑎𝑖 ≤ 𝑎𝑗 , 𝑎𝑖 = 𝑎𝑗, 𝑎𝑖 ≥ 𝑎𝑗, 𝑎𝑖> 𝑎𝑗
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Decision trees

• We can view comparison sorts abstractly in 
terms of decision trees

– A decision tree is a binary tree that represents the 
comparisons between elements

– Each node on the tree is a comparison of i:j, i.e.,
𝑎𝑖 v.s. 𝑎𝑗
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Constructing the decision tree

• Given an input sequence {𝑎1, 𝑎2, 𝑎3}
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Decision tree for an input set of four 
elements 
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Given an input sequence {𝑎1, 𝑎2, 𝑎3, 𝑎4}



Decision trees (cont’d)

• What do the leaves represent?

– The leaf node in the tree indicates the sorted 
ordering

• How many leaves must be there for an input 
of size n

– Each of the n! permutations on n elements must 
appear as one of the leaves of the decision tree
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Lemma

• Any binary tree of height h has ≤ 2h leaves 

• In other words:

– i = number of leaves

– h = height

– Then,  i ≤ 2h

• How to prove this?
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Theorem 8.1 

• Any comparison sort algorithm requires 
Ω(𝑛𝑙𝑔𝑛) comparisons in the worst case

• How to prove? 

– By proving that the height of the decision tree is 
Ω(𝑛𝑙𝑔𝑛)

– What’s the # of leaves of a decision tree? l = ?

– What’s the maximum # of leaves of a general 
binary tree? lmax = ?

10/5/2016 10



Proof

• l = n! and lmax = 2h

• Clearly, the # of leaves of a decision tree is less 
than or equal to the maximum # of leaves in a 
general binary tree

• So we have: n! ≤2h

• Taking logarithms:  lg (n!)  h
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Proof (cont’d)

• Stirling’s approximation tells us:

• Thus, h ≥ lg (n!) 
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Sorting in linear time

• Counting sort

– No direct comparisons between elements!

– Depends on assumption about the numbers being 
sorted

• We assume numbers are in the range [0.. k]

– The algorithm is NOT “in place”

• Input: A[1..n], where A[j]  {0, 2, 3, …, k}

• Output: B[1..n], sorted 

• Auxiliary counter storage: Array C[0..k]

• notice: A[], B[], and C[]  not sorting in place
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Counting sort

1 CountingSort(A, B, k)

2 for i= 0 to k // counter initialization

3 C[i]= 0;

4 for j= 1 to A.length // counting each number

5 C[A[j]] += 1;

6 for i= 1 to k // aggregate counters

7 C[i] = C[i] + C[i-1];

8 for j= A.length downto 1 //move results

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;

14



A counting sort example
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2 5 3 0 2 3 0 3A k = ?

Numbers are in the range [0.. 5]

0 0 0 0 0 0C

0     1     2     3     4     5 

5



Filling the C array
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2 5 3 0 2 3 0 3A

0 0 0 0 0 0C

0     1     2     3     4     5 

1 111 2 22 3



Filling the C array (Cont’d)
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2 0 2 3 0 1C

0     1     2     3     4     5 

2 4 7 7 8



Sorting the numbers
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2 2 4 7 7 8C

0 1     2     3     4     5 

2 5 3 0 2 3 0 3A

B

1 2 3 4 5     6     7     8 



Sorting the numbers
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2 2 4 7 7 8C

0 1     2     3     4     5 

2 5 3 0 2 3 0 3A

B

1 2 3 4 5     6     7     8 

6

30

1



Sorting the numbers
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0 1     2     3     4     5 

2 5 3 0 2 3 0 3A

B

1 2 3 4 5     6     7     8 
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Counting sort
• Total time: O(n + k)

– Usually, k = O(n)  k < c n

– Thus counting sort runs in O(n) time

• But sorting is (n lg n) ! Contradiction?

– No contradiction--this is not a comparison sort (in 
fact, there are no comparisons at all!)

– Notice that this algorithm is stable 

• The elements with the same value is in the same 
order as the original

• index i < j, ai = aj  new index i’ < j’
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Stable sorting

Counting sort is a stable sort: it preserves the 
input order among equal elements.

A: 4 1 3 4 3

B: 1 3 3 4 4



Counting Sort

• Why don’t we always use counting sort?

• Because it depends on range k of elements

• Could we use counting sort to sort 32 bit 
integers?  Why or why not?

• Answer: no, k too large (232 = 4,294,967,296)

– We need huge arrays, e.g., C[4,294,967,296]? 

– k >> n  O(n+k) = O(k)
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Radix Sort

• Intuitively, we may sort on the most significant 
digit (MSD), then the second msd, etc.

• Recursive MSD radix sort:

– Take the k-th most significant digit (MSD)

– Sort based on that digit, grouping same digit elements 
into one bucket

– In each bucket, start with the next digit and sort 
recursively

– Finally, concatenate the buckets in order
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An example of a forward 
recursive MSD radix sort

• Original sequence: 170, 045, 075, 090, 002, 
024, 802, 066

• 1st pass- Sorting by most significant digit 
(100’s):

– Zero bucket: 045, 075, 090, 002, 024, 066

– One bucket: 170

– Eight bucket: 802
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An example (cont’d)

• 2nd pass- Sorting by next most significant digit 
(10’s), only needed by numbers in zero bucket:

– 045, 075, 090, 002, 024, 066

– Zero bucket: 002

– Twenties bucket: 024

– Forties bucket: 045

– Sixties bucket: 066

– Seventies bucket: 075

– Nineties bucket: 090
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An example (cont’d)

• 3rd pass- Sorting by least significant digit (1’s): 
no need because there are no tens buckets 
with more than one number.

• 4th pass- The sorted zero hundreds buckets 
are concatenated and joined in sequence to 
give 002, 024, 045, 066, 075, 090, 170, 802
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Most Significant Digit (MSD) Radix Sort

• Problem: 

– lots of intermediate piles of cards to keep track of

• 10 buckets each round

– MSD sort does not necessarily preserve the 
original order of duplicate keys

• Depending on how we sort the bucket
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Least significant digit (LSD) Radix 
Sort 

• Key idea: sort the least significant digit first

• Assume we have d-digit numbers in A

RadixSort(A, d)

for i= 1 to d

StableSort(A) on digit i
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Example: LSD Radix Sorting
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Radix Sort
• Can we prove it works?

• Sketch of an inductive argument (induction on 
the number of passes)

– Assume lower-order digits {j: j < i } are sorted

– Show that sorting next digit i leaves array correctly 
sorted 

• If two digits at position i are different, ordering 
numbers by that digit is correct (lower-order digits are 
irrelevant)

• If they are the same, numbers are already sorted on the 
lower-order digits.  Since we use a stable sort, the 
numbers stay in the right order 32



Questions?

• Can we use any sorting algorithms instead of 
stable sorting in LSD Radix sorting?
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Why stable sorting

• 657 658 469 595

• If the sorting algorithm is not stable

• First pass: 595 657 658 469

• Second pass: 658 657 469 595

• Third pass: 469 595 658 657
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Radix Sort

• What sort will we use to sort on digits?

• Counting sort is obvious choice: 

– Sort n numbers on digits that range from 0..k

– Time: O(n + k)

• Each pass over n numbers with d digits takes 
time O(n+k), so the total time O(dn+dk)

– When d is constant and k= O(n), takes O(n) time
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How to break words into digits?

• We have n word 

• Each word is of b bits

• We break each word into r-bit digits, d = b/r

• Using counting sort, k = 2r -1

• E.g., 32-bit word, we break into 8-bit digits
• d = 32/8 = 4,  k = 28 -1 = 255

• T(n) = ( d*(n+k) ) = (b/r * (n + 2r ))
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How to choose r?
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Still in O(n)



Radix Sort Example
• Problem: sort 1 million 80-bit numbers

– Treat as four-digit radix 220 numbers

– r = 20 and d = 4

– We can sort in just four passes with radix sort!

– (b/r * (n + 2r )) = (bn/lgn) = (4,000,000)

• Compares well with typical O(n lg n) comparison sort 

– Requires approximately O(n lg n) = O(20,000,000) 
operations 

– So why would we ever use anything but radix sort?

– Doesn’t sort in place (why?)

– Depends on implementation, e.g., quicksort uses cache 
better
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Summary: Radix Sort

• Assumption: input has d digits ranging from 0 to k

– Basic idea: 
• Sort elements by digit starting with least significant

• Use a stable sort (like counting sort) for each stage

– Each pass over n numbers with d digits takes time O(n+k), 
so total time O(dn+dk)
• When d is constant, and k=O(n), takes O(n) time

– Fast, stable, and Simple to code
• Doesn’t sort in place

• Depends on implementation, e.g., quicksort uses cache better

• Cannot easily sort floating point numbers
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Bucket Sort

• Assumes the input is generated by a random 
process that distributes elements uniformly 
over [0, 1).

• Idea:
– Divide [0, 1) into n equal-sized buckets.

– Distribute the n input values into the buckets.

– Sort each bucket.

– Then go through buckets in order, listing elements 
in each one.
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Bucket Sort (cont’d)

• Input: 
– A[1 . . n], where 0 ≤ A[i ] < 1 for all i .

• Auxiliary array: 
– B[0 . . n − 1] of linked lists, each list initially empty.
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Bucket sort Implementation

42

Easily compute the bucket index n · A[i]



Bucket sort with 10 buckets
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Correctness

• Consider A[i ] and A[ j ]

– Assume without loss of generality that A[i ] ≤ A[ j ] 

– Then, bucket index  n · A[i ] ≤ n · A[ j ]

• A[i ] is placed into the same bucket as A[ j ] or 
into a bucket with a lower index

– If same bucket, insertion sort fixes up

– If earlier bucket, concatenation of lists fixes up
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Informal Analysis

• All lines of algorithm except insertion sorting take 
(n) altogether

• Since the inputs are uniformly and independently 
distributed over [0,1), we do not expect many 
numbers to fall into each bucket

• Intuitively, if each bucket gets a constant number 
of elements, it takes O(1) time to sort each bucket 
⇒ O(n) sort time for all buckets.
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Formal Analysis

• Define a random variable:

ni = the number of elements placed in bucket B[i ]

• Because insertion sort runs in quadratic time, 
bucket sort time is
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Formal Analysis (Cont’d)
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ni = the number of elements placed in bucket B[i ]



ni = the number of elements placed in bucket B[i ]
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The Claim
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(x1+x2+x3)(x1+x2+x3)

= x1
2 + x1x2+ x1x3 

+ x2
2 + x1x2+ x2x3

+ x3
2 + x1x3+ x2x3



Analysis
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Analysis (Cont’d)
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Analysis conclusion

• This is a probabilistic analysis 

– We used probability to analyze an algorithm 
whose running time depends on the distribution 
of inputs.

• With bucket sort, if the input isn’t drawn from 
a uniform distribution on [0, 1), all bets are off

– Performance-wise, but the algorithm is still 
correct
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Bucket Sort Summary

• Assumption: input is n real #’s from [0, 1)

– We can map other number into the range of [0, 1)

• Basic idea: 

– Create n linked lists (buckets) to divide interval 
[0,1) into subintervals of size 1/n

– Add each input element to appropriate bucket 
and sort buckets with insertion sort

• Uniform input distribution  O(1) bucket size

– Therefore the expected total time is O(n)
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Linear Sorting Common Mistakes

• Using counting sort, when memory is limited

– The size of k  the size of C[0..k]

• Using bucket sort, when the input are not 
uniform distributed 
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Linear-time Sorting Summary 

• We have learned three linear-time sorting 
algorithms

• Their assumptions on input

– Counting sort  [0..k]

– Radix sort  d digits

– Bucket sort   uniform distribution [0, 1)
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