COT 6405 Introduction to Theory of
Algorithms

Topic 10. Linear Time Sorting

10/5/2016

How fast can we sort?

* The sorting algorithms we learned so far

— Insertion Sort, Merge Sort, Heap Sort, and
Quicksort

* How fast are they?
— Insertion sort O(n?)
— Merge Sort O(nlgn)
— Heap Sort O(nlgn)
— Quicksort O(nlgn)

Common property

e Use only comparisons between elements to
gain order information about an input
sequence

* Comparison sort

— Given two elements a; and a;, we perform one of
the following tests to determine their relative
order

— ;< aj, a; < Clj, a;, = Clj, a; = Clj, a;> Clj

Decision trees

* We can view comparison sorts abstractly in
terms of decision trees

— A decision tree is a binary tree that represents the
comparisons between elements

— Each node on the tree is a comparison of i, i.e.,
a; V.S. Clj

Constructing the decision tree

* Given an input sequence {a¢, a,, as}

10/5/2016

1:

1:2
<
=
2:3 1:3
N
2:3 1:3 2:1:3
=7 N2
1:3:2 3:1:2

3:2:1

Decision tree for an input set of four
elements

Given an Input sequence {aq, a,, as, a,}

B
32 %34 dy "—;‘: 33 31 5‘ 34 32 51.33
- / - A/ “A / - »_
a3 =y A3 =23y =2y A3 =12y a;=ay

.\. II k LY kY

"‘ ". v “ ~
3233 aaaa / / U E aa:a‘ / 1 / H
]234{ 194932 2134*- 2413*

a, a,ﬂa4 a; =a, 33534 =a, a=a, a;=a; a3=a,

CICPE FERRRE FET 3233 /_ / ‘Z ;213,33 242,233 v/ '/ﬂ / J
\ " \ \

31333234* 31343332* 33313234* 3334a|az'~ 32333134 -:‘ dgdydgdy . 133323134* 33343231“
8185343, 8481838 8381348, 8483313, 2,858,43; 843,833 A38,843; 8433353,

10/5/2016 7

Decision trees (cont’d)

* What do the leaves represent?

— The leaf node in the tree indicates the sorted
ordering
* How many leaves must be there for an input
of size n

— Each of the n! permutations on n elements must
appear as one of the leaves of the decision tree

Lemma

* Any binary tree of height h has < 2" leaves
* |n other words:

— i = number of leaves
— h = height
—Then, i< 25

* How to prove this?

Theorem 8.1

* Any comparison sort algorithm requires
(A(nlgn) comparisons in the worst case

* How to prove?

— By proving that the height of the decision tree is
Q(nlgn)
— What's the # of leaves of a decision tree? | =?

— What’s the maximum # of leaves of a general
binary tree? | _ =7

Proof

l=nlandl__ =2"
Clearly, the # of leaves of a decision tree is less

than or equal to the maximum # of leaves in a
general binary tree

So we have: nl <2/
Taking logarithms: lg (n!) <h

Proof (cont’d)

 Stirling’s approximation tells us:
n n
nl> (—j
e
* Thus, h = lg (n!)

h > Ig[ﬂj
e

Nign—nlge
Q(nilgn)

Sorting in linear time

* Counting sort
— No direct comparisons between elements!
— Depends on assumption about the numbers being

sorted
* We assume numbers are in the range [0.. k]

— The algorithm is NOT “in place”
* Input: A[1..n], where A[j] € {0, 2, 3, ..., k}
e Output: B[1..n], sorted
* Auxiliary counter storage: Array C[0..k]
* notice: A[], B[], and C[] = not sorting in place

Counting sort

CountingSort (A, B, k)

for i= 0 to k // counter initialization
C[i]= O;

for j= 1 to A.length
CI[A[J]] += 1;

for i= 1 to k // aggregate counters
Cl[1] C[i] + C[i-1];

for j= A.length downto 1 //move results
B[C[A[]]]] A[j];
CIA[j]] -= 1;

O 0 Jd o U1 & WD R

=
o

A counting sort example

Numbers are in the range [0.. 5]

A |2|513|0f2|3|]0|3| Kk

for j= 1 to A.length
CIA[j]1] += 1;
for i= 1 to k // aggregate counters
C[i] = C[i] + C[i-1];
for j= A.length downto 1 //move results
B[C[A[]j]]1] = A[3];
0 CIA[3]1] -= 1;

4
5
6
7
8
9
1

10/5/2016

10/5/2016

Filling the C array

21513102 ,3|0)3

O 1 2 3 4 5

2 2|3]0]1

1 CountingSort(A, B, k)

2 for i= 0 to k // counter initialization
3 C[i]= O;

for

i=1 to k
C[i] = C[i] + C[i-1];
for j= A.length downto 1 //move results

B[C[A[]]]
CIA[31] -

]

// counting each number

// aggregate counters

= A[j];
1;

16

Filling the C array (Cont’d)

0 1 2 3 4 5
C |2|2|a|7]|7]|8]

1 CountingSort(A, B, k)

2 for i= 0 to k // counter initialization
3 C[i]l= O;

4 for j= 1 to A.length

5 CI[A[] += 1;

8 for j= A.length downto 1 //move results
9 B[C[A[]]]] = A[]]:
10 C[A[]j]] -= 1;

10/5/2016

10/5/2016

A |12|5|3|0|2]3|0]|3

Sorting the numbers

1 2 3 4 5 6 7 8

0O 1 2 3 4 5
2124|7178

1 CountingSort(A, B, k)

2 for i= 0 to k // counter initialization

3 C[i]l= 0;

4 for j= 1 to A.length

5 C[A[j]l] += 1;

6 for i= 1 to k // aggregate counters

7 C[i] = C[i] + C[i-1];

18

10/5/2016

Sorting the numbers

A 2 (5131012 (3|0]|3
1 2 3 4 5 6 7 8
0 3

0O 1 2 3 4 5
112|146 |7]|8

1 CountingSort(A, B, k)

2 for i= 0 to k // counter initialization

3 C[i]= O;

4 for j= 1 to A.length

5 C[A[3j]] += 1;

6 for i= 1 to k // aggregate counters

7 C[i] = C[i] + C[i-1];

19

10/5/2016

Sorting the numbers

A 2 (5131012 (3|0]|3
1 2 3 4 5 6 7 8
0 3|3

0O 1 2 3 4 5
1121457 |8

1 CountingSort(A, B, k)

2 for i= 0 to k // counter initialization

3 C[i]= O;

4 for j= 1 to A.length

5 C[A[3j]] += 1;

6 for i= 1 to k // aggregate counters

7 C[i] = C[i] + C[i-1];

20

Counting sort

e Total time: O(n + k)
— Usually, k =0(n) 2 k<cn
— Thus counting sort runs in O(n) time
e But sorting is Q2(n Ig n) ! Contradiction?

— No contradiction--this is not a comparison sort (in
fact, there are no comparisons at all!)

— Notice that this algorithm is stable

e The elements with the same value is in the same
order as the original

* indexi<j,a;=a 2 newindexi’ <}’

Stable sorting

Counting sort Is a stable sort: it preserves the
Input order among equal elements.

Counting Sort

Why don’t we always use counting sort?
Because it depends on range k of elements

Could we use counting sort to sort 32 bit
integers? Why or why not?

Answer: no, k too large (232 =4,294,967,296)
— We need huge arrays, e.g., C[4,294,967,296]?

— k >>n =2 O(n+k) = O(k)

Radix Sort

* |ntuitively, we may sort on the most significant
digit (MSD), then the second msd, etc.

* Recursive MSD radix sort:
— Take the k-th most significant digit (MSD)

— Sort based on that digit, grouping same digit elements
into one bucket

— In each bucket, start with the next digit and sort
recursively

— Finally, concatenate the buckets in order

An example of a forward
recursive MSD radix sort

* Original sequence: 170, 045, 075, 090, 002,
024, 802, 066

e 1st pass- Sorting by most significant digit
(100’s):
— Zero bucket: 045, 075, 090, 002, 024, 066
— One bucket: 170
— Eight bucket: 802

An example (cont’d)

* 2nd pass- Sorting by next most significant digit
(10’s), only needed by numbers in zero bucket:
— 045, 075, 090, 002, 024, 066
— Zero bucket: 002
— Twenties bucket: 024
— Forties bucket: 045
— Sixties bucket: 066
— Seventies bucket: 075
— Nineties bucket: 090

An example (cont’d)

* 3rd pass- Sorting by least significant digit (1's):
no need because there are no tens buckets
with more than one number.

e 4th pass- The sorted zero hundreds buckets
are concatenated and joined in sequence to
give 002, 024, 045, 066, 075, 090, 170, 802

— Zero bucket: 002

— Twenties bucket: 024 — Zero bucket: 045, 075, 090, 002, 024, 066
— Forties bucket: 045 — One bucket: 170

— Sixties bucket: 066)
X |es. ucke — Eight bucket: 802
— Seventies bucket: 075

— Nineties bucket: 090

Most Significant Digit (MSD) Radix Sort

* Problem:

— lots of intermediate piles of cards to keep track of
* 10 buckets each round

— MSD sort does not necessarily preserve the
original order of duplicate keys

* Depending on how we sort the bucket

829 457
457 ' 457
457 829

901 901

29

Least significant digit (LSD) Radix
Sort

* Key idea: sort the least significant digit first
 Assume we have d-digit numbers in A

RadixSort (A, d)
for 1= 1 to d
StableSort (A) on digit 1

31

Example: LSD Radix Sorting

720
355
436

A5 | eesipie

57

329

339
N

329
355
436
457
657
720
339

Radix Sort

 Can we prove it works?

e Sketch of an inductive argument (induction on
the number of passes)

— Assume lower-order digits {j: j < i } are sorted

— Show that sorting next digit i leaves array correctly
sorted

* |f two digits at position i are different, ordering
numbers by that digit is correct (lower-order digits are
irrelevant)

* If they are the same, numbers are already sorted on the
lower-order digits. Since we use a stable sort, the
numbers stay in the right order

Questions?

* Can we use any sorting algorithms instead of
stable sorting in LSD Radix sorting?

Why stable sorting

657 658 469 595

If the sorting algorithm is not stable
First pass: 595 657 658 469

Second pass: 658 657 469 595
Third pass: 469 595 658 657

Radix Sort

* What sort will we use to sort on digits?

* Counting sort is obvious choice:
— Sort n numbers on digits that range from 0..k
— Time: O(n + k)
e Each pass over n numbers with d digits takes
time O(n+k), so the total time O(dn+dk)
— When d is constant and k= O(n), takes O(n) time

How to break words into digits?

We have n word

Each word is of b bits

We break each word into r-bit digits, d = rb/r_‘
Using counting sort, k =2"-1

E.g., 32-bit word, we break into 8-bit digits
e d=[32/8]=4, k=28-1=255

T(n) = O(d*(n+k)) = BO(b/r * (n + 2"))

How to choose r?

How to choose r? Balance b/r and n 4+ 2", Choosing r # lgn gives us

e (ﬁ {H-|—H}) = @(bn/lgn).

+ Ifwechooser < lgn, thenb/r = b/lgn, and n + 2" term doesn’t improve.

+ If we choose r > lgn, then n + 2 term gets big. Example: r = 2lgn =
T =72l {zlgﬁ}i —nl

37

Radix Sort Example

* Problem: sort 1 million 80-bit numbers

— Treat as four-digit radix 22° numbers

—r=20andd =4

— We can sort in just four passes with radix sort!

— O(b/r * (n+2")) = BO(bn/lgn) = ®(4,000,000)
 Compares well with typical O(n Ig n) comparison sort

— Requires approximately O(n lIg n) = 0(20,000,000)
operations

— So why would we ever use anything but radix sort?
— Doesn’t sort in place (why?)

— Depends on implementation, e.g., quicksort uses cache
better

Summary: Radix Sort

* Assumption: input has d digits ranging from O to k
— Basic idea:

* Sort elements by digit starting with least significant
e Use a stable sort (like counting sort) for each stage

— Each pass over n numbers with d digits takes time O(n+k),
so total time O(dn+dk)
 When d is constant, and k=0O(n), takes O(n) time

— Fast, stable, and Simple to code
* Doesn’tsort in place
 Depends on implementation, e.g., quicksort uses cache better
e Cannot easily sort floating point numbers

Bucket Sort

* Assumes the input is generated by a random
process that distributes elements uniformly
over [0, 1).

* Idea:

— Divide [0, 1) into n equal-sized buckets.
— Distribute the n input values into the buckets.
— Sort each bucket.

— Then go through buckets in order, listing elements
in each one.

Bucket Sort (cont’d)

* |nput:
—A[1..n],where0O<A[i]<1foralli.
e Auxiliary array:
— B[0.. n-1] of linked lists, each list initially empty.

42

Bucket sort Implementation

BUCKET-SORT(A, n)

fori < lton
do insert A[z] into list B[|n - Al7]]]
fori «0ton—1
do sort list B[:] with insertion sort
concatenate lists B[0], B[1],..., B[n — 1] together in order
return the concatenated lists

L Easily compute the bucket index Ln- A[i]J }

43

Bucket sort with 10 buckets

R R e e T = TR O, B - T o

S
-

A

78

A7

39

26

12

94

21

12

23

.68

(a)

o 0 N S B W o = O

B
/
——>.12| —1—>.17
——>1.21| .23 26
——>1.39
/
/
——>.68
—>1.72| —T>1.78
/
>1.94

(b)

Correctness

* Consider Ali]and A[j]
— Assume without loss of generality that A[i | < A[/]
— Then, bucketindex n-Al[i]<n-A[j]

 Ali]is placed into the same bucket as A[j] or
into a bucket with a lower index
— If same bucket, insertion sort fixes up
— If earlier bucket, concatenation of lists fixes up

Informal Analysis

* All lines of algorithm except insertion sorting take
®(n) altogether

* Since the inputs are uniformly and independently
distributed over [0,1), we do not expect many
numbers to fall into each bucket

* |ntuitively, if each bucket gets a constant number
of elements, it takes O(1) time to sort each bucket
= O(n) sort time for all buckets.

Formal Analysis

* Define a random variable:
n,=the number of elements placed in bucket B[/]

* Because insertion sort runs in quadratic time,
bucket sort time is

n—1
Tin)=(n)+ Z G{H?} .
1=

Formal Analysis (Cont’d)

Take expectations of both sides:

n—I1
E[T(n)] = E|®m+)Y 0
=i

n—I1
G(n)+ ZE [G{Hf}] (linearity of expectation)
=N

n—1

Om)+ Y OE[r]]) (E[aX]=aE[X])
1=

Ln,-z the number of elements placed in bucket B[] }

47

48

n.=the number of elements placed in bucket BJi]

Claim
E [n}-:"] =2 —(l/n)yfore =0,...,n— 1.

Proof of claim
Define indicator random variables:

« X;; = 1{A[,] falls in bucket 1}
« Pr{A[y] falls n bucket:} =1/n

* i — Xij . . ;
" g " X,;= Al falls in bucket i}.
= {1 if A[j] falls in bucket i
0 if A[j] doesn’t fall in bucket i

Then

E [n?]

49

The Claim

(X1+Xo+X3)(X+X+X;3)
— 7 - 2
f = X1©+ XXt XX
. (Z‘YU)} 1© + X1 Xt X1X3
\i= + X% + XX+ XX

E Zx +zz Z xuxm} + X3%+ X1 Xg+ XpX3
_j=l

i=l k=j+1

DY E[X]]+ zz Z E[Xi;Xi] (linearity of expectation)
= ji=lk=j+1

0% . Pr{A[j] doesn’t fall in bucket i} + 1% - Pr {A[] falls in bucket i}

[

1 1
{}-(]——)—I—l-—

n n

1

n

Analysis
E[X;;Xj] for j # k: Since j # k, X;; and X;; are independent random variables

= E[X;jXi] = E[X;]E[X;]
B 1 1
T onon
]
- 3
Therefore:

f

E[n = Z —|—’7'Z;kZH—L
j= =1 k=j+l

50

Therefore:

E[T (n)]

o1

Analysis (Cont’d)

| ny 1
”'EH(E)E

n—1

A(n) + Z 02 —1/n)
=0
= @(n)+ On)

= G(n)

m (claim)

Analysis conclusion

* This is a probabilistic analysis
— We used probability to analyze an algorithm
whose running time depends on the distribution
of inputs.
* With bucket sort, if the input isn’t drawn from
a uniform distribution on [0, 1), all bets are off

— Performance-wise, but the algorithm is still
correct

Bucket Sort Summary

e Assumption: input is n real #'s from [0, 1)

— We can map other number into the range of [0, 1)

 Basicidea:

— Create n linked lists (buckets) to divide interval
[0,1) into subintervals of size 1/n

— Add each input element to appropriate bucket
and sort buckets with insertion sort

* Uniform input distribution = O(1) bucket size
— Therefore the expected total time is O(n)

Linear Sorting Common Mistakes

e Using counting sort, when memory is limited
— The size of k =2 the size of C[0..k]

e Using bucket sort, when the input are not
uniform distributed

Linear-time Sorting Summary

* We have learned three linear-time sorting
algorithms

* Their assumptions on input
— Counting sort - [0..k]
— Radix sort - d digits
— Bucket sort — uniform distribution [0, 1)

